2216099122@qq.com
cs代写,cs代做,python代写,java代写,c,c++,作业,代码,程序,编程,it,assignment,project,北美,美国,加拿大,澳洲
cs代写,cs代做,python代写,java代写,c,c++,作业,代码,程序,编程,it,assignment,project,北美,美国,加拿大,澳洲

扫码添加客服微信
python
# 1. 环境配置(requirements.txt)
# torch torchvision numpy matplotlib scikit-learn
# 2. 数据加载与预处理
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
# 3. 模型定义(以ResNet18为例)
import torch
import torch.nn as nn
import torchvision.models as models
class CustomResNet(nn.Module):
def __init__(self, num_classes=10):
super(CustomResNet, self).__init__()
self.model = models.resnet18(pretrained=True)
self.model.fc = nn.Linear(self.model.fc.in_features, num_classes)
def forward(self, x):
return self.model(x)
model = CustomResNet(num_classes=10).cuda()
# 4. 训练与验证
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
def train_one_epoch(model, loader, criterion, optimizer, device):
model.train()
total_loss = 0
for images, labels in loader:
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss / len(loader)
# 5. 主训练循环
num_epochs = 10
for epoch in range(num_epochs):
train_loss = train_one_epoch(model, train_loader, criterion, optimizer, device='cuda')
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {train_loss:.4f}")
# 6. 模型保存
torch.save(model.state_dict(), 'resnet18_cifar10.pth')
albumentations
或RandAugment
提升模型泛化能力。
torch.cuda.amp
)、梯度累积。
合作流程:
联系方式:
此框架可根据具体需求扩展(如增加模型评估、可视化代码),适合技术团队或个人开发者接单使用。